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Langevin Dynamics of an Interface near a Wall 
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We study dynamical contact angles and precursor films using Langevin 
dynamics for SOS type models, near a wall which favors spreading. We first 
solve exactly the Gaussian model and discuss various asymptotic regimes. This 
is only appropriate to partial wetting. We then consider more general models. 
Using local equilibrium and scaling arguments; we derive the shape of the 
dynamical profile and the speed of the precursor film which exists when the 
spreading coefficient is strictly positive. Long-range potentials lead to a layered 
structure of the precursor film. We aiso consider the case of a meniscus in a 
capillary. 

KEY WORDS: Langevin dynamics; SOS model; interface; contact angle; 
precursor film. 

1. I N T R O D U C T I O N  

The dynamics of wetting is a subject of considerable current interest, in 
no small part due to the experimental work of Cazabat, Heslot, and 
others. (1-5) A prominent feature is the occurrence of a precursor film, which 
can be of molecular thickness, in the spreading of a macroscopic drop 
when the parameters are such that, at equilibrium, there would be 
complete wetting. 

Some understanding of the dynamics of wetting has been achieved at 
a phenomenological level, including hydrodynamic effects. (6 8) The present 
paper is devoted to a simplified model which can be treated within statisti- 
cal mechanics. 
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The first rigorous discussion of wetting at equilibrium was conducted 
at a microscopic level for the planar Ising model. (9) An important feature 
to emerge from this exact work is its approximation by random walk or 
solid-on-solid (SOS) models; if the systems are viewed on a scale propor- 
tional to the bulk-phase correlation length, this approximation becomes 
essentially exact. This is of crucial importance in dynamical studies (other 
than numerical), since it appears hopeless to attempt to study stochastic 
dynamics of the Ising models themselves other than numerically. It turns 
out that significant progress can be made on the dynamics of SOS models. 

In their usual' formulation, the SOS phase-separating surface is 
described by a unique height variable h(r) defined for f e z  d-1 in the 
d-dimensional case. In the wetting case we want the surface to lie above the 
boundary surface z = 0; thus h(r)>~0. The dynamics for a time-dependent 
interface described by h(r, t) is often formulated in terms of the Langevin 
equation (a~13) 

Oh(r, t) 1 
~t 2 

VU(h(r, t)) + q(r, t) 

where the function U describes the energy of the interface and r/(r, t) is 
white noise with zero mean and covariance satisfying 

(r/(r, t)r/(r', t ' ) ) =  O~,r,~(t-- t') 

Note that the usual friction and temperature parameters have been nor- 
malized to one for simplicity of notation. 

Treating the white noise consistently demands that we violate the 
restriction h(r, t)>~0. It is thus difficult if not impossible to attach a 
meaning to these models when applied to wetting rather than to free inter- 
faces. Recently the exact Ising results for d - -2  have been discussed from a 
different point of view, making the SOS restriction in a direction parallel, 
rather than normal, to the substrate plane. (14) We shall adopt this point of 
view (see Fig. 1). The variables h(r, t) are therefore not restricted to 
positive values and the Langevin equation is thus consistent with the 
allowed configurations. 

Recently, there has been much study of growth processes where one of 
the phases is favored in the bulk (see in particular ref. 15). In this situation, 
one is therefore led to a Langevin equation with a term which does not 
derive from a potential. In our case, we consider a Langevin equation 
derived from a Hamiltonian and the motion of the interface is due to the 
difference of the wall free energies. 

In Section 2, we introduce and discuss the various models at equi- 
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Fig. 1. 
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Typical configuration showing displacement parallel to the substrate as a function of 
the height above the substrate. 

librium. In Section 3 we solve completely the Gaussian version of our 
model, for which 

L 

U(ho,..., h L ) = J ~ ,  ( h i - h  i l ) 2 - # o h o  
1 

where ~o > 0 favors the spreading of the interface. This model never shows 
complete wetting, but we can use it to define and calculate a dynamical 
contact angle. We can also exhibit scaling regimes where both h(x, t) itself 
and x are scaled by t 1/2 for large times, L having been taken to infinity first. 
Then there is the final approach to equilibrium on a scale t ~ L 2. The mean 
profile becomes a straight line and the fluctuations about it scale as L m 
exactly as one would expect. We should point out that the finite-size 
behavior of the interface pinned at its ends but without other constraint 
has already been investigated in the Gaussian case. (16) 

We then discuss more general models with 

L 

U(ho ..... hL)=E P(hi-hi 1)- oho 
1 

which enable one to capture both partial wetting (Section 4) and complete 
wetting (Section 5) with, say, P ( x ) ~ J [ x [  as Ix[ ~ ~ .  Assuming that there 
is local equilibrium and that there is a suitable scaling regime, we shall find 
the shape of the dynamical profile. For  a strictly positive spreading coef- 
ficient, we establish the existence of a precursor film and show that it 
advances at a velocity which we calculate. We also display the shape of the 
profile which is left behind, which scales like t 1/2 in both directions. 
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In Section 6, we discuss the structure of the precursor film when the 
contact wall potential #o is replaced by a longer-range potential. 

Finally, in Section 7, we consider the dynamics of wetting in a 
capillary tube. 

2. THE MODELS 

Let us consider an interface between two phases, say A and B. Its 
position is characterized by the heights hi as represented in Fig. 1 with 
i =  0, 1,..., L. If we do not consider overhangs, the "energetic" cost of this 
interface may be defined by some SOS type model 

L 

U(ho ..... h D = ~  P(h,-hi  ~)-l~oho (1) 
i ~ 1  

where P(x) is an even function, increasing for x > 0, and such that 

P(x) 
lira = + ~  (2a) 

x ~  +oo X 

o r  

p ( x )  = Jlxl + ~(Ixl) 
~(X)  

with 7 = l i m  < 2 (2b) 
x , ~  logx 

(we have assumed for simplicity that the limit exists). A particular case is 
the Gaussian model defined by 

L 
U(ho,..., hL) = J ~ (h~- h,_ ~)2 _ #oho 

1 

The term -#oho  simply takes into account a preference of the wall of 
the container for phase A. The other end of the interface will be pinned at 
hL= 0 for definiteness. At equilibrium, the partition function is given by 
(we fix the temperature at kT= 1 for simplicity) 

fcrO fq-oO Z= dho.., dhr e U(hohL)6(hL) 
oo - o o  

Introducing xi = h i -  hi_ 1 leads to 

I L 
o~ - - ~  t_ 1 1 
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and therefore 

L l O g Z =  - l o g l  +~ d x e  e(x)-,ox 
- - o D  

In the Gaussian case, we get 

- - o 0  

t/2 

The corresponding mean profile Yz, i = l,..., L, will therefore be given by 

~u~ (3) -gi = - ~ )  

for any i = 1,..., L in the Gaussian case and by 

[+~ xe -p~x~-~~ clx 
x'= '~+~ e P(~-"~ (4) 

for any i =  1,..., L in the general case, i.e., in both cases, a straight line 
because the mean value of the increments is independent of i. 

The contact angle 0cq (see Fig, 2) satisfies obviously at equilibrium the 
equation 

cot Oeq = - -X  i ( 5 )  

_t-1/2 

Fig. 2. Definition of the contact angle. 
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This contact angle obeys the modified Young equation 117'1s) 

cos 0 a A~(O) --  sin 0 a'aB(O) = a A W - -  a ~W 

where 

and 

G A W - -  O'BW ~" ~ 0  

aAs (O ) = --sin 0 log f e-V(x)+"(~176 ~ . . . .  to) d x  

(6) 

(7) 

where the function #(cot 0) solves the equation 

r e -  e(x~ + ~(oot o)~(x _ cot O) d x  = 0 (8) 

which is always possible under condition (2a) or (2b) above. Knowing 
aAB,  one can consider (7) and (8) as a system of equations for the 
functions P and/~. 

We illustrate this point in the case ~ra~(0)=6 independent of 0 
(isotropic) and for anB(O)=6ising(O ) (SOS representation of the two- 
dimensional Ising model giving the exact surface tension for all angles, for 
any fixed temperature). 

In the first case (7) and (8) lead to 

and 

o-t 
~ ( t )  - (1 + t2) 1/2 

f 
~o 2aKl((x 2 ...j_ 0-2)1/2) 

e -  P(x) = ~ e - a ( 1  + t2) 1/2 COS [X d t  = (X 2 + 0.2)1/2 

where K1 is a modified Bessel function. 
In the second case, we have (19) 

fla sin 0 + f la '  cos 0 = ~(il~(O)) 

where ~ is Onsager's function, which is defined by 

cosh ~(ip) = cosh 2Kcoth 2 K -  cosh p 

with K =  flJ, and/~(0) satisfies 

cot 0 = ~( i#)  
Op 
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In this case, (7) and (8) lead to 

S e P(~)= & o e i ~ X { ( A - - c o s a ) ) - [ ( A - c o s c o ) 2 - 1 ]  1/2} 

with A = cosh 2Kcoth  2K. Here the variable x is an integer. Both the first 
and second cases lead to 7 = 3/2 in (2b). 

Returning to the question of the equilibrium contact angle, we find 
that 0cq as a function of #o is obtained by solving 

/x(cot 0cq) = #o 

Let us now examine the dynamics of that interface. To describe the 
approach to equilibrium, we choose the Langevin dynamics given by 

1 # U  
dhi= - - - ~ d t + d f l i , 2  i =  0,..., L -  1 

i.e., 

dho = [~/~0 - �89 - hi)]  dt + dfio 
(9) 

1 / dh, = ~ [P (hi , - hi) - P ' ( h i -  hi+1 )] dt + dfli 

with the simplest initial conditions hi = 0 for any i at t = 0 and with hE = 0 
for all t. 

Our model can also be compared to the Lifschitz equation (2~ which 
has been used to describe the time evolution of an interface in a system 
with a second-order phase transition focusing on the effects of surface 
tension rather than those of hydrodynamics. This equation states that 
the normal component vn of the speed of the interface at the point x is 
proportional to the inverse of the radius of curvature r(x), 

v , =  2r(x)  1 

where 2 is proportional to the surface tension. This is of course a con- 
tinuum theory. Referring to Fig. 1, the height i is replaced by a continuous 
variable x, and the position of the interface is denoted by h(x, t). From the 
well-known relations 

h"(x) h 
r(x)  ~ -  {l + [h ' (x)]2}  3/2' v n -  {1 + [h ' (x)]2}  '/2 

the Lifschitz equation can be written as 

2h"(x) 
1 + [ h ' ( x ) 3  2 
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The analogous equation in the anisotropic case is given by 

h = ,~h"(x) 
1 + [h ' (x) ]  2 [o-(arctan h') + a"(arctan h ')]  

These equations should be supplemented first by a term describing the 
interaction with the substrate and second by fluctuations in the spirit of the 
Langevin equation. This leads to serious conceptual and analytical 
problems, in particular for the wetting regime with a microscopic precursor 
film, and we shall only consider below the discrete model. 

3. D Y N A M I C S  OF THE G A U S S I A N  M O D E L  

We shall now solve explicitly the Langevin equation corresponding to 
the quadratic potential 

L 1 

U ( h ) ~ - J  2 ( h i + l - h i )  2-]~0 hO 
o 

where we have assumed hL = 0. For the associated Gaussian model, the 
Langevin equation is given by 

where e0 is the L-dimensional vector (1, 0,..., 0), p is an L-dimensional 
Brownian motion, and the L by L matrix A is given by 

1 

- 1  

0 

A =  

- 1  0 0 0 . . . . . .  \ 
2 - 1  0 0 . . . . . .  

- 1  2 - 1  0 . . . . . .  

~ 0 0 - 1  2 - 1  

0 0 0 - 1  2 /  

The general solution of the Langevin equation is therefore given by 

;-o h(t)--#~ l ( eo - -e -JA teo)+  e JA(~ ,) d~J(s)+e-JAth(O) 
2J 

(lo) 

The last term is a transient term which is absent if we start with the initial 
condition h(0)= 0. The first term is the stationary solution of the deter- 
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ministic problem. Finally, the second term is the (Gaussian) fluctuation 
(note that this simple decomposition is only true for quadratic potentials). 

In order to compute the relevant quantities, we shall of course 
diagonalize the Hermitian matrix A. It is easy to verify that the eigenvalues 
are given by 

•q ~- 2 { 1 - cos [g(Zq + 1 )/(2L + 1 ) ] } 

with q = 0 ,  1,..., L - 1 .  The associated normalized eigenvectors have com- 
ponents 

S q = [2/(L + 1/2)] 1/2 cos[z( j  + 1/2)(2q + 1)/(2L + 1)] 

( j = 0 ,  1 ..... L - l ) .  
It is now convenient to perform the orthogonal transformation which 

diagonalizes the matrix A, and to integrate the stochastic differential 
equation. If we denote by hq the component of the vector h on the qth 
eigenvector, we obtain the equation 

dhq = (#oSq/2 - J2qhq) dt + dflq(t) 

where /~q (q ~-0, 1, 2,..., L - 1 )  is again a collection of independent one- 
dimensional Brownian motions (this is true because we have performed an 
orthogonal transformation). The solution with initial condition zero is 
therefore given by 

h q ( t ) =  ll~ f f q t l - - e  sxq')+ foe J2q(t--s) d~q(S ) 
2J)vq ~o~ 

It follows from the above formula that the mode number q relaxes to equi- 
librium with a time scale of order J 12q 1. For q small this time scale is of 
order L z, and of order unity for large values of q (q of order L). 

Performing the inverse orthogonal transformation, we obtain for the 
components (hj(t))o<~j<,L 1 of the vector h(t) 

L--1 

z = Z SJ e -J'(' S) d~q(S) (11) 
q=0 q=0 

Again, the first term is the solution of the deterministic problem, while the 
second sum is the contribution of the fluctuations. 

From this expression, we can obtain immediately an expression for the 
average of the Gaussian random variable hi(t), 

L--1 
{ h i ( t ) ) =  y'  ~t~ sqsq(1 -e  J~q') (12) 

q = o 2J,~q 
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and for the variance 

( 1 -  e 2sxqt) (13) (hi( t)  2) - (h i ( t ) )2  = ~q 
2J2q 

As mentioned above, different modes have different relaxation times, 
and we shall now extract from the previous formula some interesting 
asymptotic behaviors in various regimes. We shall first consider the case 
where the position variable j is much smaller than the vertical size L and 
the time variable t id much smaller than L 2. It is tempting to replace the 
above sums on q by integrals, since they look like Riemann sums. There is, 
however, a difficulty coming from the divergence of 2q I for q fixed and L 
large. To avoid this difficulty, one can observe that (h i ( t ) )  is analytic and 
uniformly bounded in the complex right half-plane in t. It is therefore 
enough to deal with the limiting problem for the time derivative, which 
avoids the previous difficulty. Integrating back, one gets the natural answer 

, 0  ~.rC [(  ~) ] (2) 1__C 2J(1 .... )t 
lim (h i ( t ) )  2~ZJJo cos j +  x cos dx (14) L~oo 1 --COSX 

It follows easily from the above formula that the result becomes simpler if 
we use a scale t m f o r j  and h (see Fig. 3). 

t-1/2 i 

t -Y2h i 

Fig. 3. Scaling behavior of the dynamical profile. (a) t = 10, (b) t = 100, (c) t = 1000. 



Langevin Dynamics  o f  an In te r face  near  a W a l l  519 

We shall see later on that this scaling is also relevant in more general 
situations. We get 

= #o (~  cos(zY J-1/2) (1 - e  -:2) dz (15) 
lim lim t-~/Z(hytv2(t)) lr N ~  JO Z2 

Note that the integral on the right-hand side can also be expressed in terms 
of a primitive of the error function. If we define the contact angle at the 
wall 0 w by 

c o t 0 w =  lira ( h o - h l )  
L ~ o o  

we obtain 

#o fo~ x)(1 - e 2J(1 . . . .  ) t )d  x c O t 0 w = ~ - j  ( l + c o s  

which for t large is asymptotically equal to the equilibrium value of the 
cotangent of the contact angle, namely #o/2J, the correction being O(t 1/2). 
One can show even more, namely that with probability one 

lim lim ho - h ;  = cot Oeq 
,/~ + c o  L ~ o o  j 
t ~ + o O  

;/,/7 ~ 0 

(16) 

Returning to the continuum model, if we assume that the profile has 
a small slope 

h'(x) ~ 1 

we obtain exactly the same results. 
We also can obtain a simple formula for the variance of the fluctua- 

tions, which is 

lim lira t l /2 ( (hy t , /2 ( t )2) - (hy t l /2( t ) )2  ) 
t - * c o  L ~ o o  

= -~ cos2(J-1/2yz) z 2(1-e-ZZ2)d z 

Note that in this limit, the amplitude of the fluctuations is of the order of 
t l/4, whereas normal fluctuations of a string of length L with periodic 
boundary conditions would be of order (t/L) 1/2. The above result is also 
true for P0 = O, which corresponds to a string with one end loose and the 
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other fixed. For t ~ L  2, the loose end has fluctuations of amplitude t U4 

which matches (t/L) 1/2 for t~-, L 2. 
Another interesting time scale is of course t ~ L 2, which is the final 

approach to equilibrium. The mean profile relaxes to a straight segment 
and the fluctuations are of order L 1/2. More precisely, we have in scaled 
variables 

7c-J t%~=~oC~ (q + 1/2) 2 1/2)2~) lim L l(hyt.(zL2))=---~. ( 1 - e  j=2(q+ 
L + + c o  

which implies for ~ large enough 

lim L-t(hyL(zL2)) 
L---~ + m  

As a consequence, we can only have partial wetting in the Gaussian case. 

4. LOCAL EQUIL IBRIUM A N D  SCALING A R G U M E N T S :  
PARTIAL WETTING 

We shall now consider a general SOS type model with Hamiltonian 

L 

U(ho ..... hL) = ~ P(hi-  hi_ 1) - -  [/oho 
i - -1  

in a partial wetting case, i.e., 

0 </Zo < lim P(x) 
x ~ o r  X 

This condition implies that ho/L will remain bounded, which corresponds 
to partial wetting. Complete wetting will be considered in Section 5. We 
recall that P(x) is an even function increasing for x > 0. 

The Langevin equations now read 

dho=[�89 ~ ' - ~P ( h o -  hl)]  dt + dflo (18) 

dhi=rlp'~h 1 - h i ) - 1  , 5P(hi-h~+~)]dt+d~s, i = 1  ..... L - 1  L 2  ~. i -  

where we again fix hc = 0 Vt. It is well known that the equilibrium Gibbs 
measure 

L 1 

e x p { - U ( h 0  ..... hL_ l ,0 )}  ]-I dhi 
0 
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is invariant under the Langevin dynamics. Rigorous results as to the 
approach to equilibrium could be formulated for L finite, but would be 
difficult to extend to the case of interest L ~ oe. We shall therefore begin 
with heuristic arguments and conjectures. 

Suppose that the mean profile (hi(t)) is a smooth function of i, for 
example, as in the Gaussian case 

(2hi( t)-hi+l( t)-hi  ~(t))<...O(t 1/2), l ~ t ~ L  2 

Then, on a scale 14 t 1/2, the profile is approximately a straight line. If 
we suppose also that the slope varies slowly with time, then we have local 
equilibrium. We shall assume that ( P ' >  is a function of the local slope 
(hi-hi+l>: 

< P'(hi-  hi+ l) ) ~" ]~( < hi-- hi+ i > ) (19) 

local equilibrium assumption, we expect the function F to From the 
satisfy (21) 

x exp[ -P(x)  + #(~) x] dx 
I e x p [ - P ( x )  + #(2) x] dx 

This local equilibrium argument leads to an equation for mean values: 
from (18) and (19) we obtain 

d(hi> 1 h 1 
dt ~ k t ( ( i _ , - h i ) ) - - ~ l ~ ( ( h i - h i + l ) )  (20) 

We hope of course that the error in this approximate formula will be 
negligible for 1 ~ t ~ L 2. For this to be true, it is necessary that the error 
in (19) should be of second order [e.g., O(t -1) if the scale is to be 0(tl/2)], 
or that the errors in applying (19) to (P ' (hi_l -hi ) )  and (P'(hi-hi+l))  
cancel at first order in (20). 

Let us now make a scaling argument: consider t~> 1 and t small 
relative to L 2 in such a way that the spreading of the foot of the profile has 
not yet affected the top, i = L. The initial condition was indeed hi(0) = 0 u 
and the driving force comes from/~o which is applied to i = 0. Therefore we 
should have 

< P ' ( h L _ I  -- hL) > -~ 0 

and summing (18) from i = 0 to L -  1 yields 

dl\-- o hi =~kto-~ <P'(hL-1--hL)> "~#o  (21) 
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Suppose that the profile scales as t ~ on the h axis (spreading direction). 
In view of (21), it should then scale as t 1-x on the i axis: 

(h,(t) ) = t;(~(it ;-~) (22) 

for some smooth scaling function ~b(-). 
Changing i into a continuous variable y and injecting (22) into (20), 

we get 

dt;~(yt~ , )=l  d ( d  l)) 

or 

2t;.-1/2(9(yt ~ i ) - ( 1 - 2 ) t  ~ 1/2(yt;. ')q~'(yt ~-1) 
__lt3(;~ ,/2)(9,,(yt;.-l)l~,(t2;~ l(9,(yt;~ l)) 

We see that 2 = 1/2 is the only choice which gives a scale-invariant 
equation, whatever the function #(-) or the P( . )  which defines the model. 
The function ~b(z) with z = yt-l/2 should then satisfy 

~b(z) - z~'(z) = ~b"(z). #'(~b'(z)) (23) 

with two boundary conditions 

~b(c~ ) = 0 (24) 

and 

f o  dz = "o 2 

This last condition can be related to the dynamical contact angle by 
integrating (23) once, which gives 

2 dz = 

so that the boundary condition at z = 0 becomes 

-#(~b'(0)) =/~0 (25) 

This shows that the dynamical contact angle is stationary and equals 
the equilibrium contact angle. This is consistent with our loeal equilibrium 
assumption. 
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All the above results can be checked to hold true in the Gaussian case. 
In particular, (23) then reads 

O(z) - zO'(z) - 2J~b"(z) = 0 (26) 

which indeed has (15) as a solution. A notable difference in the general case 
is that the function #(-), and therefore (23) and the shape of the profile, 
depend upon the temperature, i.e., upon the variance of the Brownian 
(which we normalized to one for simplicity of notation). 

Another question is whether relaxation to equilibrium occurs for 
t ~ L 2, The previous regime indicates that relaxation at the top i-~ L will 
not begin before t ~ L 2. One probably could prove that the relaxation time 
is in fact not larger than order L 2. 

The above results can be traced through the continuum model based 
on the Lifschitz equation. For example, looking for a similarity solution of 
the Lifschitz equation of the form x~- O(x/x/ t )  gives the equation 

0(z)-zO'(z)= 
22~b"(z) 

1 + [O ' ( z ) ]  ~ 

which happens to be (23) with #( t )=  arctan(t). 

5. LOCAL E Q U I L I B R I U M  A N D  SCALING A R G U M E N T S :  
COMPLETE WETTING 

We shall now consider 

g o = J =  lim P(x) /x  (27) 

which is the wetting transition, and then #0 > J, which corresponds to a 
strictly positive spreading coefficient (dry spreading). 

The arguments leading to the scaling form (23) should still be valid, 
at least for i not too small (possibility of a precursor film). Let us therefore 
examine (23) with (24) and with (25), which should be understood as 

lim -#(r 1/2))=/~ 0 
it -1/2 ~ 0 

Recall that #(.) is defined by 

x exp[ - P ( x )  + tt(Y~) x] dx 

e x p [ - P ( x )  + #(~) x] dx 

822/61/3~4-2 
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The function #(if) increases from 0 to J as 2 increases from 0 to oo. The 
contact  angle 0 is given by 

1 
tan 0 = - - -  

~'(0) 

and (25) shows that  it goes to zero indeed as/~o /~ J. 
For  #0 = J, we have q~'(0)= - ~ ,  and one may  ask whether ~b(z), solu- 

tion of (23)-(25), has an asymptote  ~ ( z ) ~  ~ as z ~ 0 ,  or  whether it 
remains finite. To answer this question, we need the behavior  of # ' (~)  near 

= oo or  equivalently the behavior of ~ ' (#)  near # = J. 
We have 

x ' ( # ) :  ~ x2e Jill ~(x)+~x d x _  (I  xe Jlxl-~{x)+,~ dx)2 
I e-JIxl-~(~)+ux dx \ I e Jl~l-~(x)+~x dx ,1 

and the behavior  for J - #  ~ 0 will depend on y defined in (2b) by 

7 = lim ~(x) 
~ ~ log x 

We first consider the case 1 < ? < 2. An easy computa t ion  leads to 

which implies 

for ff large enough. Using this expression of #'  in Eq. (23), one can check 
that the ansatz 

q~(z) = q~(0) - 2z ~ 1 + higher-order terms 

solves the equat ion for z near zero. This implies 

lim <ho(t ) )  t -v2< oo 
t ~ o O  

In other words, at the wetting transition the contact  angle vanishes and 
there is neither an asymptote  nor  a precursor  film. 

In the case 7 < 1, similar computa t ions  lead to 

~(~) = ( j -  ~)-~ 
and 

~,(~) ~ x 2 
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Taking this estimate into (23) yields 

O(z) - zO'(z) ~- %"(z) (28) 
~'(z) 2 

which should be valid for z ~ 0 ,  with (b'(z)--+-oo. This second-order 
differential equation admits az and (2 log az-1),/2 as asymptotic solutions 
for z ~ 0. Only the second is compatible with the boundary conditions. 
Therefore 

~b(z)~(21ogaz-X)'/2~oo as z - - ,0  (29) 

If we return to the original variables and invert hi into ih, we find the 
following asymptotics: 

ih~atl/2 exp ( -  ~t ) (30) 

We can also express the result for 7 < 1 as 

( ho )  ~ tl/2(log 0'/2 
i + 2  

(hi -  hi+, ) ~ log ~ -  t'/2(log t)-1/2 

(31) 

i =  0, 1 .... 
(32) 

i ~ t'/2 

There is a significant point in Eq. (31). Suppose h, <h0:  then in the SOS 
dynamics [P(x)=Jlxl], only the noise term remains in dho, that is, 
dho=dflo, which seems to contradict (31). The fact is that hi catches up 
with ho sufficiently often to produce (31), contrary to what might have 
been thought to be the case. 

It is worth noticing that the existence or not of an asymptote in the 
case of a contact angle equal to zero may also be investigated at equi- 
librium for a droplet in a corner as in the summertop construction. (22) In 
the framework of (2b) the question can be answered: for 2 > 7 > 1 there is 
no asymptote, as in our dynamical model. For  7 < 1, there is an asymptote 
behaving as logz  ' [compared to ( logz ,),/2 in the dynamics; cf (29)]. 
For  ~ > 2, the contact angle cannot approach zero. 

This concludes our analysis of the case/~0 = J, and we turn to #0 > J. 
We first observe that the boundary condition (25) cannot be satisfied, 
because the range of -/~(~b'(0)) is between 0 and J. Yet we should have 

h~ ~-~/~o 
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Thus, a finite fraction of ~ -  1 h; is not seen on the scale (t 1/2, t 1/2) of 
the profile ~b(z), and should therefore be concentrated at z = 0 ,  or i ~  tl/2: 

dt ~ h, = ~ ( / t 0 - J )  (33) 
i ~ t l /-  

O n  the other hand, we have 

d I 1 
<ho> = ~ / t o -  5 <P' (ho -h , )>  

1 
~> ~ (/t o - J) (34) 

We conclude that the fraction of the spreading phase which is missing 
from the t 1/2 profile is entirely concentrated in h0. Indeed, (33) and (34) 
imply 

<ho> ~ �89 t (35) 

and ( h i ) . ~  t. If we now look back at 

d<h~> l <e,(ho_h,)> 1 dt =-2 --~ ( P'(h~ - h2) > 

we see that h o -  hi is so large that we can set P ' ( h o -  h i )=  J, and the equa- 
tions for hi, h2,..., hL_ 1 become effectively the same as those for ho ..... hL_ 1 
at the transition point/t0 = J. 

In conclusion, we get a precursor film of length ~ t ahead of a profile 
scaling as t 1/2 in both directions (see Fig. 4). 

t 
_t~/2 

-- ill 

_1.1/2 ~ Displacemenf 

- f  

Fig. 4. Spreading profile with a precursor film, 

Height 

\ 
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6. LONG-RANGE POTENTIALS 

One may ask what happens if the wall potential, which is just a 
contact one of the form #0ho in Eq. (1), is replaced by a long-range one. 
This can be taken in the form 

Ftoho-~ uj(h i 1 - h j ) = ~  #jhj 
1 0 

with #o=fio - Ul, and # j=  u j - u j +  1. The physical interpretation is that uj 
is the interaction of the interface with the wall at a distance j. It is expected 
that u j > u j + l  for j >  1. Finally, it should be kept in mind that the layer 
index j = 0, 1 ..... corresponds to a coarse-grained height. 

We consider again models defined by (27). The first observation is 

--dt hi =2 o # i - ~ ( P ' ( h n - h = + l ) )  (36) 

for any integer n, so that complete wetting will occur if and only if 

~ # i ~ J  
0 

The second observation is that the front of a precursor film may have 
a thickness of several layers. As a first example consider 

with 

We have 

#o>#1 > # 2 = # 3  . . . . .  0 

#0"+" #1 > J 

d ( h o + h l >  = 1 1 7 ~ (#0-~- #1)--~ ( P ' ( h l - h 2 ) )  

Anticipating the result hi >> h2, we get 

i 
ddt ( h o + h ~ ) - ~ ( # o + p l - J )  

and 

d <ho_hl ) 1 1 dt =-~ ( # o - # 1 ) -  ( P'(ho-  hl) > + ~ ( P'(hl - h2) > 

1 
~- ~ (#o - #~ + J) - ( P'(ho - hl) ) 

(37) 

(38) 
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If #l > go - J ,  still with Pl < go, then ho >~ hi and (38) imply 

<P'(ho-h,)><J 

so that ho-hl  remains bounded as t ~  ~ and the precursor film consists 
of two layers moving together at speed �88 + #1 - J). 

If ftl < #o - J, then 

_ >1  
d ( h o - h l > ~ - ~ ( g o - # 1 - J ) > O  
dt 

which implies 

(P'(ho-hl)  ) ~-J 

let 

n = m a x  Ps Pi--J (39) 
- =  l O 

w i t h p i ~ 0 a s i T o o  and 

# 0 > # 1 > # 2  > - ' -  > 0  

~ # i > J  
0 

and n = 0 if the set is empty. The assumptions imply n finite. The same 
argument as with Po, /~1 alone now gives the following structure to the 
precursor film: n + 1 layers moving together at speed 

2 (n+  1) 
- -  ( P O + # l +  "'" + P n )  ( 4 0 )  

followed by the other layers i =  n + 1, n + 2,..., moving each at its own 
1 speed �89 5#,+2 ..... 

Our third and last observation concerns the part of the profile which 
scales as t 1/2. Let us assume 

# i ~ i  -1 a s  i ~  

and the precursor film consists of a first layer moving at speed �89  
followed by a second layer moving at a lower speed 1 7#1. 

Similarly, for a long-range potential 
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which is not a physical restriction. Then the precursor film, if there is one, 
will not be visible in the t I/2 part of the profile. Indeed, if i =  tl/Zy, the 
extension of the precursor film at i is of order #it, which satisfies 

# i t < i - l t =  y ltl/2 

and is therefore much smaller than the extension of the scaling profile, 
which is 0(t l /2) .  

Also, in case of partial wetting, #i ~ i 1 guarantees that the #i do not 
spoil the scaling form of the profile. In particular, a contact angle is well 
defined at the t 1/2 scale, and is equal to the equilibrium value, defined by 
[see (36) and (19)] 

--~(cotO) : ~ i  (41) 
o 

7. THE CAPILLARY CASE 

In this section we shall consider the wetting problem in a two-dimen- 
sional strip (a model for a capillary tube). The Langevin system is now 
given by 

' h ~ ) - P ' ( h i - h ~ + , ) ]  dt+dfl~ dhi= ~[P (hi_l- 

for i = 1 ..... L -  1, and 

dho = ~P'(hl - ho) dt + d/~o +1 ~#o dt 

dhL = �89  I -- hL) dt + d i l l  + �89 dt 

The hypotheses on the interaction P are the same as before. We shall now 
show that there is an equilibrium state in a moving frame with a well- 
defined speed. In a frame moving at speed v with respect to the laboratory 
frame, the Langevin system is essentially the same except that we have to 
subtract - v dt to each equation. If we denote again by hi for i = 0,..., L the 
random variables in the moving frame, we obtain the equations 

dhi=l[p'(hi 1-hi)-P'(hi-hi+l)-2v]dl+dfli (42) 

for i = 1,..., L -  1, and 

dho = �89 - ho) dt + d~o + �89 ~ dt 

dhL = �89 _ ,  -- hL) dt + dil L + m uo dt - v dt 
(43) 
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We easily get 

d (~o h i l = # o - ( L + l ) v  dt 

This suggests that we look in the frame moving at speed 

]AO 

L + I  

We shall now recover this formula from the existence of an equilibrium 
state only in this moving frame, in the nonwetting case. The (nonnor- 
malized) density of an equilibrium state in a frame moving at speed v will 
be given by 

j - - L  1 j - - L  
e(h~176 [I e--P(hj hi+l) H e--2vhj 

j=O j=O 

We can now rearrange the above formula as follows: 

j = L - - I  j = L  
e(h~176 I ]  e P(hj ~j+~) I~ [ e-Z~hj 

j = 0  j - o  

/ = L -  ] 
= e(h~176176 ]~I e--P(hj hj+L) C v(hj--hj+l)(2j+l L) 

j--O 

We can integrate this density over the variables hi,..., hL 1 to get the effec- 
tive density for the variables ho and h L. This effective density is given by 

e~O(hO + hL) e ~(L + l)(h 0 + hL)Rz~(ho _ hL) 

where ( ,  denotes the convolution) 

RL(s) = r~o,L) * r(1,L) " " *  r(L ],L)(S) 

and 

r ( j , L ) ( S ) =  e elsl e v(2j+l--L)s 

In the nonwetting case, the function RL is integrable, and we get a nor- 
realizable state independent of the value of h 0 + hL if and only if 

]AO 
v = (44)  

L + I  



Langevin Dynamics o f  an Interface near a Wa l l  531 

Let us therefore choose a frame moving at this speed, and such that 

hi=O at t = 0  

We then have 

l~  he) = 0 Vt 

As t ~ ~ ,  the difference variables xj = h i -  hi+ 1 will become indepen- 
dent random variables distributed according to the unnormalized densities 
rj.L(xj). The mean profile ( h i )  will be a meniscus, e.g., a parabola if P( . )  
is Gaussian (see Fig. 5). 

It is worth noting that this profile could be obtained by a Wulff 
construction, at least when L ~ ~ :  if the wall and interface free energies, 
corresponding to the Hamiltonian 

#o(ho + hL) + P(hj -  hj+ ) 

are minimized at fixed volume 

2 hj=O 

then the same profile as above is obtained (see ref. 21 for a proof). In 
particular, the contact angle will obey the same Young equation. There will 
remain a slight difference between equilibrium expectation values and the 
expectation values coming out of the Langevin dynamics: the former are 
averages over configurations, whereas the latter are averages over the noise 
from t = 0 to the given time t, starting from fixed initial conditions. The dif- 
ference will not be visible in expectation values involving only difference 

Fig. 5. 

] 

I 

f 

Stationary profile of a meniscus in a moving frame. 
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variables, but  the center of mass will drift away like t!/'2 in the Langevin 

dynamics,  whereas it is held fixed at 0 in the equi l ibr ium measure. 
The above discussion concerns the equi l ibr ium solut ion for the hi, or 

the s tat ionary solut ion for the original variables. These will be at tained for 
t ~> L 2. The smaller time scales could be discussed as in the preceding 
sections. 
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